
J .  Fluid Mech. (1986), vol. 170, pp. 13S168 

Printed in a r e a t  Britain 
139 

Experimental study of the two-dimensional inverse 
energy cascade in a square box 

By J. SOMMERIA 
Gis Madylam, Institut de MBcanique de Grenoble, BP 68, No. 38402, 

Saint Martin D’HBres Cedex, France 

(Received 3 April 1985 and in revised form 14 February 1986) 

A quantitative experimental study of the two-dimensional inverse energy cascade is 
presented. The flow is electrically driven in a horizontal layer of mercury and 
three-dimensional perturbations are suppressed by means of a uniform magnetic 
field, so that the flow can be well approximated by a two-dimensional Naviedtokes 
equation with a steady forcing term and a linear friction due to the Hartmann layer. 
Turbulence is produced by the instability of a periodic square network of 36 
electrically driven alternating vortices. The inverse cascade is limited at large scales, 
either by the linear friction or by the finite size of the domain, depending on the 
experimental parameters. In the first case, k-t spectra are measured and the 
corresponding two-dimensional Kolmogorov constant is in the range 3-7. In  the 
second case, a condensation of the turbulent energy in the lowest mode, corresponding 
to a spontaneous mean global rotation, is observed. Such a condensation was 
predicted by Kraichnan (1967) from statistical thermodynamics arguments, but 
without the symmetry breaking. Random reversals of the rotation sense, owing to 
turbulent fluctuations, are more and more sparse as friction is decreased. The lowest 
mode fluctuations and the small scales are statistically independent. 

1. Introduction 
Two-dimensional turbulence is relevant in many situations where body forces or 

boundary conditions prevent the growth of three-dimensional disturbances. This can 
be observed in rotating flows (Colin de Verdibre 1980), in soap films (Couder 1984), 
or in liquid metals moving under the influence of a strong uniform magnetic field. 
Generalizations of two-dimensional turbulence known as geostrophic turbulence 
(reviewed, for example, by Rhines 1979 and McWilliams 1983), provide a first 
approach to understanding large scale motion of the atmosphere and oceans. While 
important properties of ordinary turbulent flows, such as the existence of the direct 
energy cascade, are essentially three-dimensional, an understanding of the large-scale 
behaviour could be supported by the concepts of two-dimensional turbulence. This 
point of view was developed by Staquet & Lesieur (1985) for the dynamics of the 
coherent structures in mixing layers. 

A fundamental peculiarity of two-dimensional flows is, in the limit of small 
viscosities, the vorticity conservation along the fluid particle trajectories, which 
prevents an energy cascade towards small scales. The existence of an inverse energy 
cascade towards large scales with a k-! energy spectrum and an enstrophy 
(mean-squared vorticity) cascade towards small scales with a k-3 energy spectrum 
were conjectured by Kraichnan (1967) for a randomly forced turbulence. The 
enstrophy cascade was also conjectured by Batchelor (1969) for freely decaying 
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turbulence, but the inverse cascade is then replaced by a growth of the integral scale. 
These ideas were confirmed in the framework of second-order closures (Kraichnan 
1971 ; Pouquet et al. 1975). Review papers were written by Kraichnan & Montgomery 
(1980) and Lesieur (1983). New developments resulted recently from high-resolution 
numerical simulations of the two-dimensional Navier-Stokes equations. The problem 
of the universality of the enstrophy cascade has received much attention. I n  the 
calculation of Brachet, Meneguzzi & Sulem (1985), a randomly chosen initial state 
produces a kP3 spectrum after some time. However, other authors, such as McWilliams 
(1984), observe that the enstrophy transfers can be inhibited by the formation of 
isolated circular vortices, in a way depending on initial conditions, which leads to 
spectra steeper than k P 3 .  Numerical investigations of the inverse energy cascade are 
more difficult, but evidence of a k-i inertial range was obtained, and different value 
of the corresponding two-dimensional Kolmogorov constant are found by different 
authors (see $6). Beyond the case of homogeneous isotropic turbulence, an interesting 
question is the nature of the large scales of motion which are created when the inverse 
cascade reaches the size of a finite domain. This problem arises for example in 
experiments made in a rotating tank (Hopfinger, Browand & Gagne 1982) where a 
mean flow is observed, in which it is difficult to  know what are the respective 
influences of angular-momentum transfers owing to three-dimensional motions and 
of the two-dimensional inverse cascade. 

Although important characteristics of two-dimensional turbulence are observed in 
several of the above-mentioned experimental examples, quantitative comparisons 
with theory or numerical computations are often difficult. This is due to the unknown 
effects of some residual three-dimensional perturbations, to uncertainties about the 
turbulent production, and also to the difficulty of measurements. I n  order to minimize 
these drawbacks, we use a thin horizontal layer of mercury subjected to  a uniform 
vertical magnetic field. The suppression of three-dimensional perturbations in such 
a situation was first observed by a Russian team from Riga (Kit & Tsinober 1971 ; 
Kolesnikov & Tsinober 1974 ; Lielausis 1975), and further theoretical and experimental 
development was brought out by Sommeria & Moreau (1982), Sommeria (1983), 
Sukoriansky, Zilberman & Branover (1984) and Selyuto (1984). Turbulence was 
created in rectangular channels by different kinds of grid and the main properties 
of the decaying two-dimensional turbulence found by Batchelor (1969) were observed. 
The turbulent diffusion was very anisotropic, and energy dissipation very weak, while 
the typical lengthscale was roughly proportional to  the time. In  addition, k-S energy 
spectra were clearly measured, but they can also be interpreted by three-dimensional 
processes (Alemany et al. 1979). 

I n  order to  obtain simple and well-controlled experimental conditions and to study 
the inverse energy cascade (from the point of view of Kraichnan 1967), we use 
electrically driven flows in a closed box. Flow visualizations are made from photo- 
graphs of the free upper surface, and precise measurements of the local stream 
function, which is proportional to  the electrical potential, are possible. The experi- 
mental apparatus, which has already been used by Sommeria & Verron (1984) with a 
different distribution of the electric currents, is described in $ 2.1. Electrical measure- 
ments can be realized simultaneously a t  11 points in order to  obtain space 
structures and spectra directly : the data-analysis methods are given in 0 2.2. The 
interpretation of the results is based on a two-dimensional approximation, developed 
in $3, in which the important non-dimensional number Rh, based upon a typical 
bottom friction time, is defined. Experimental results concerning the transition to  
turbulence, the regime of quasi-homogeneous isotropic two-dimensional turbulence, 
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FIGURE 1. The apparatus; the current distribution near one electrode and the velocity profile are 
schematized. The Hartmann-layer depth is denoted by 6. ( 1 )  Copper frame. (2) Electrodes for 
current injection and electric potential measurements. (3) Electrodes for electric potential 
measurements only. (4) Mercury. (5) Glass cover. (6) Electrically insulating bottom plate in which 
electrodes are embedded. 

and the regime for which the flow is controlled by the finite size of the domain, are 
presented in §§4, 6 and 7 respectively. Finally a comparison with some aspects of 
quasi-geostrophic flows is sketched in $8. 

2. The experiments 
2.1. The experimental device 

The experimental apparatus described by Sommeria (1984) is a square box, length 
1 = 12 cm, containing a horizontal layer of mercury of thickness a 2 cm (figure 1) .  It 
is located in the gap of an electro-magnet producing a uniform vertical magnetic field 
< 1 Tesla. The upper surface is either free, and in contact with pure nitrogen to avoid 
oxidation, or rigid, after the formation of a mercury oxide skin. The flow velocity 
is kept small enough (< 10 cm/s) for free surface waves to be negligible. A periodic 
square network of 36 alternate sources and sinks of electric current is provided by 
a corresponding network of electrodes embedded in the bottom of the box. The 
electric current is provided by a well-regulated d.c. power supply (0-20 A, maximum 
relative drift and equally distributed within a precision of by 2 sets of 18 
equal electric resistances (3 i2 each). Great care is taken to avoid any geometrical or 
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electrical dissymetry. Since the kinematic viscosity of mercury is lo-' m2 s-l (ten 
times smaller than water), the typical Reynolds numbers are fairly high ( > lo4), even 
in a small box. 

The investigation of the flow is performed in two ways. The first is to observe the 
displacement of small floating particles (50-100 pm) following the fluid motion. Of 
course this method is used only in the free-surface case, although a qualitative 
observation is still possible from the small vertical deformation of the oxide skin due 
to pressure differences. The second method is to measure the electric potential on a 
straight line of 11 electrodes at the middle of the box. Two such perpendicular lines 
are available (figure 1). The small electric tensions ( -  1 mV) are amplified lo3 times, 
using 11 low-drift operational amplifiers. Digital processing is then performed by a 
micro-computer with 12-bit resolution. 

2.2. Data analysis 
The instantaneous flow could be measured with fairly good precision (within a few 
per cent) from photographs, the length of each small trajectory being proportional 
to the corresponding velocity and to the time of exposure. In practice such 
visualizations were used only for rather qualitative global observations. Obtaining 
quantitative statistical information, such as spatial energy spectra, requires high- 
resolution digital image processing, which was not available. 

All the measurements are performed from records of the electric potential. This 
is a very direct method, its precision being limited only by the electronic noise and 
thermal drift of the amplifier. A relative precision of lop2 or can be obtained, 
especially in a strong magnetic field. The long-time behaviour of the largest scales 
is investigated from records of the electric potential at the box centre. Time spectra 
are calculated from these data by fast Fourier transforms. Direct measurements of 
the spatial structure are obtained from simultaneous records on the line of 11 
electrodes. In order to get a smooth profile, the electric potential measured at  these 
11 points is interpolated on to the line by cubic spline functions. The first space 
derivative, which is proportional to the transverse velocity component, is calculated 
analytically from this interpolation. Mean and r.m.s. velocity profiles and spatial 
autocorrelations are obtained from these results, by averaging over 800 velocity 
profiles once every 5 seconds. Spatial one-dimensional spectral are calculated either 
from a direct Fourier transform of the instantaneous potential profile using (A 22) 
and (A24), or from the autocorrelation function of the velocity using (25). The 
correspondence between these two methods is given in the Appendix. 

3. The two-dimensional approximation 

3.1. The equations of motion 
Under the effect of a strong uniform vertical magnetic field B, the flow can be divided 
into a two-dimensional core and thin Hartmann boundary layers near the horizontal 
walls. Their depth S is constant and is calculated in magnetohydrodynamics 
textbooks (Shercliff 1965) : 

where a is the total thickness of the mercury layer, M is the Hartmann number and 
p, v and cr are respectively the fluid density, viscosity and conductivity. The viscous 
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friction in the Hartmann layer is transmitted to the whole core by the 'electromagnetic 
stiffness' along the magnetic-field direction. It corresponds to a force - v*/t,, where 
v * ( q  y ,  t )  is the two-dimensional velocity field in the core and t, = (a /B)  (p/crv)t, as 
shown by Sommeria & Moreau (1982). The effect of three-dimensional perturbations 
is also estimated in that paper, and it should be limited here to small scales without 
much influence on the dynamics of the energetic scales. Otherwise the Reynolds 
number calculated from the Hartmann-layer thickness is small enough to be stable 
and so does not break into a turbulent boundary layer (Sommeria 1986). 

The electric currents brought by the electrodes are mainly restricted to the 
Hartmann layer where they are superimposed on the current associated with the 
Hartmann friction. However, the driving force is transmitted to the whole core, and 
the overall forcep  on the two-dimensional flow is equal to the integral ofj* x B along 
the z-axis. The curl off* can be expressed from the horizontal divergence of the 
horizontal j *  component, V,. j* ,  which is related to the vertical current j: through 
the bottom boundary by the current conservation, 

V x$" = Joa V x (j* x B*) dz* = B (V, . j*)  dz* = Bj:/a. (1) 

So the vorticity production rate is proportional to the injected current density. Some 
three-dimensional effects are also associated with the current injection. They are 
localized in an area of width a /Mi ,  and are investigated by Sommeria (1984, 1986) 
in simple experimental examples. Due to the corresponding Joule dissipation, the 
two-dimensional vorticity production should be slightly smaller than (1) in a 
moderate magnetic field. 

Non-dimensional coordinates must be used to compare different experimental 
results. A natural lengthscale is the box side L, but the velocity scale is not known 
a priori. So we define our non-dimensional time t such that the non-dimensional 
electric forcing is of order unity. Each real quantity is distinguished from the 
non-dimensional one by an asterisk. 

t* = ( l g y  t ,  r* = ~ r ,  j*=($)j, 

where I is the total electric current supplied by the d.c. source. The corresponding 
non-dimensional equation of motion for the velocity field in the two-dimensional core 

I (4) 

where s is a constant, equal to 1 when the upper surface is free and equal to 2 when 
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it  is rigid. The electric scheme is such that all the currents that enter the bottom must 
leave the same way, so that, using (2), 

The validity of the two-dimensional approximation (3) was checked in the same 
experimental device for particular current distributions. Isolated vortices have been 
produced by current pulses in Sommeria (1984) and measurements are very close 
to analytical solutions of (3). A four-vortex steady forcing is used in Sommeria & 
Verron (1984), and the flow is in good agreement with numerical simulations of (3). 

The experimental conditions are determined by the two non-dimensional 
parameters Re and Rh, which stand for the typical time of lateral viscosity effects 
and Hartmann friction respectively. The usual Reynolds number Re* can be known 
only once velocity is measured: 

Re* = (v$ Re, 

and a typical value of Re* is lo4. Otherwise, the parameter Rh is much smaller than 
Re (between 1 and 40), which means that the Hartmann friction is the main cause of 
energy dissipation. So one could expect that the results depend mainly on this 
friction parameter and are almost independent of Re. Conversely, the experimental 
verification that Rh is the main pertinent parameter is a good test of the validity 
of the two-dimensional approximation (3). 

The stream function @ and the vorticity w are important quantities defined as 

a@ 
a Y  ’ 

y ax’ 

w = (V x v) ,  = -VZ@. 

v, = - 

2) =- -  

(6) 
An interesting feature of the electrically conducting fluid is that the local stream 
function can be measured directly. Indeed, the electric currents are confined to the 
Hartmann layers, so that in the two-dimensional core of the flow, Ohm’s law states 

(7) 
Consequently the electric potential $*, which can be directly measured, is constant 
along streamlines and is then proportional to the stream function $*. As a 
consequence of the impermeability condition, the stream function is constant on the 
lateral boundary and can be chosen equal to zero without any lost of generality. 
This condition is in agreement with the constant electric potential at  the infinitely 
conducting walls. 

It will be useful to expand the stream function in a Fourier series in order to define 
spatial spectra. For this purpose one could extend the stream function to a periodic 
one in x and y with period 1 .  This extended stream function should be continuous 
because of the impermeability condition but with its first derivative discontinuous. 
One can eliminate this drawback by first extending the stream function to a square 
[ - 1 , 1 ]  x [ - 1 , 1 ]  by antisymmetry, and then extending it to a periodic one (with 
period 2). The corresponding Fourier expansion is 

V$* = V* x B. 
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where ' k n m  = 4 s,' s,' @(x, y) sin n n x  sin m n y  dx dy, 

and the vorticity can be expanded by term-by-term differentiations : 
f f i f f i  

w = -v+ = z z fl(nZ+mz) $,, sinnnx sinmny. (9) 

This later expansion is convergent everywhere inside the square but not on the 
boundary itself if w + 0. This discontinuity is associated with an asymptotic 
behaviour of f i n ,  as (n2+m2)-2 for large n and m (see for example Tolstov 1962), 
which corresponds to  a k-4 isotropic energy spectrum. This geometrical effect of the 
boundary could modify the slope of the inertial-range spectrum only if it  were steeper 
than k-4. 

n-1 m=1 

3.2. The energy and enstrophy production 
The total production rates of energy and enstrophy by the force f are written 
respectively 

I n  the present experimentsj,(,, y) can be represented by a network of N 2  alternating 
positive and negative peaks localized at the electrodes (here N = 6).  This distribution 
can be developed in a Fourier series. 

w f f i  

jZ(,, y) = Z Z j,, sin nnx sin mny, 
n-i m-1 

where J, ,  = 4 lo1 JO1 jZ(,, y) sin nnx sin mny dx dy. 

The current density can be considered to a first approximation as a sum of Dirac 
functions 8, the Fourier transform of which is (using (5)) 

J, ,  = 8( - 1 ) (n -N) '2N(  - 1 ) ( m - N ) / 2 N  if n and m are even multiples of N ,  

= o  in the other cases. (13) 

I n  fact, the electrodes have a finite diameter and some local three-dimensional flows 
can exist above them, so J, ,  must decrease as an  exponential for large wavenumbers. 

The energy and enstrophy production given by (10) and (11) can be expanded in 
a series made of terms of the type $,,Jn,. Since the energy spectrum of two- 
dimensional turbulence decreases strongly at large wavenumbers (at  least in k?), the 
first term of the series must be very dominant, especially for the energy production, 
so that 

(14) q,, y, t )  x 8'k6, 6 ( t )  sin2 6nx sin2 6ny x - 
72n2 ' 
r(t) 

where the spatial mean is represented by the angled bracket. More generally the 
whole dynamics should be well approximated by a steady forcing in the 6 , 6  sinusoidal 
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mode. There is good experimental evidence that, for moderate values of Rh, the flow 
behaves like a homogeneous isotropic turbulence driven by a random forcing with 
the two production rates (E) and (a).  The equivalent isotropic forcing should be at  
a wavenumber close to 6 4 2 ,  the modulus of the wave vector (6,6). In this context, 
the measurement of (E) and (a )  is an important point. It could be obtained by (15) 
from a two-dimensional spectral analysis of the velocity field or equivalently from 
the mean velocity associated with the forcing, which becomes 

1 (v,) = 3n(e) sin6xx C O S ~ R Y ,  

(v,) = - 3x(s) cos 6xx sin 6xy.J 

Alternatively, the rate of energy production can be estimated from an energy 
balance. Considering that the main dissipation comes from the bottom friction, a 
simple relation is obtained : 

4. The transition to turbulence 
The stability properties of the periodic network of alternating vortices are not well 

understood, although Sivashinski & Yakhot (1985) proposed a mechanism of very 
large-scale instability. However, the linear bottom friction is not included in their 
theory, in which the only dissipative effect is the usual viscosity. In the present case 
the Reynolds number is high and the large scales are strongly damped by the bottom 
friction, so this theory cannot be used. 

The experimental study of the transition is performed in a magnetic field of 1 Tesla 
with a rigid upper surface. The electric potential at the centre is followed on an 
oscilloscope, and a visual observation of the flow is also possible from the small 
deformation of the oxide skin associated with pressure variations. The electric 
current is slowly increased step by step and a direct transition to a turbulent state 
occurs at I = 1.033 A corresponding to Rh = 1.78. This transition is associated with 
pairings of equal-sign vortices. If we consider that the box is made of 9 smaller boxes 
each containing 4 vortices, the instability mechanism described in Sommeria & 
Verron (1984) should occur: two vortices form a bigger one while the others are 
stretched at the periphery. The perfect-slip boundary conditions used in that paper 
are compatible with this partition of the box. The corresponding transition threshold 
for the four vortices is experimentsally 1.72 and numerically 1.37, with a spatially 
sinusoidal steady forcing (Sommeria & Verron 1984). So the idea that the destabili- 
zation of the network is associated with the 4-vortex interaction is in good agreement 
with these results. The difference between the numerical value and the experimental 
one could be explained by the localization of the vorticity production near the 
electrodes in the latter. 

The complete behaviour near the transition is in fact fairly complex (figure 2). 
First, when the electric current is decreased once the turbulent state has been 
reached, the periodic network is obtained again only for Rh = 1.24 in the general 
case. However, in very rare circumstances a steady pattern, represented in figure 
3(a), can also be reached. Its stability domain extends from Rh = 1.08 to 1.55. This 
flow is the result of the interaction between the 9 vortices at each corner. A similar 
pattern, represented in figure 3 (b), can also be obtained, but it is only metastable and 
goes back to the periodic network after about one minute. 
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FIGURE 3. Schematic representations of streamlines in the 4-vortex configurations. 
(a) The stable one. (b) The metastable one. 

5. The turbulent regimes, photographic observations 
We are interested in the steady dynamical regimes which correspond to different 

values of the friction parameter Rh. We also wish to check that the results are not 
sensitive to the Reynolds number Re, at least when it is large enough. In  practice 
the magnetic field is chosen between 0.125 and 1 Tesla and the total electric current 
between 0.5 and 16 A. For each run the mercury is initially at rest and the electric 
current is suddenly switched on. A well-ordered vortex network is then created over 
a period of a few tens of seconds (figure 4a). When Rh > 1.78, this network is fully 
destabilized by pairing processes and a turbulent regime occurs. We then wait about 
ten minutes in order to get a statistically permanent flow before beginning photo- 
graphy or electric measurements. 

The first point apparent in figure 4 (W) is that the turbulent structures are larger 
and larger for increasing values of Rh. As the final result of this evolution with Rh, 
a mean rotating flow is observed (figure 4 4 ,  in which small vortices are superimposed. 
The appearance of this mean flow is discussed in $7;  however we shall first be 
concerned with the quasi-homogeneous isotropic regime that occurs for smaller 
values of Rh. 

An easy way to quantify the turbulent scales from photographs like those in figure 4 
is to count the mean number (N) of vortex cores in the box (figure 5 ) .  In practice, 
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FIGURE 4. Photographs of a central band of the upper surface, using a 45' mirror. The velocity 
field is represented by the traces of small particles (t is the time of exposure, the scale is 
1 cm/division). (a) The initial motion when the current is switched on; (b) Rh = 7.27, B = 0.48 
Tesla, t = 195 ms (2 examples); (c) Hh = 29.1, B = 0.24 Tesla, t = 114 ms (2 examples); ( d )  
Rh = 41.1, B = 0.12 Tesla, t = 195 ms (2 examples). 



Two-dimensional inverse energy cascade in a square box 149 

20 

(N)  

10 

+ 

+ +  

A 

I I I I 

10 20 30 
Rh 

FIGURE 5. Mean number (N) of vortex cores in the whole flow versus Rh. +, B = 0.48 T; 
0 ,  B = 0.24 T; A, B = 0.12 T. 

we need t o  add the results obtained for the different bands of the free surface that 
can be visualized at any one time. A typical turbulent integral scale can be estimated 
as ( L 2 / ( N ) ) :  from a hypothesis of equal-size vortices. I n  fact this mean number is 
the result of some small-scale vortices as well as of the large vortices which make the 
greatest contribution to  the turbulent energy. So the integral scale can be under- 
estimated by this method. A better characterization of the inverse cascade is 
provided by energy spectra and correlation functions. Such calculations are possible 
from photographs, but they require digital image processing, which has not been 
undertaken here. These quantities are more easily obtained from electrical measure- 
ments which are presented in the next section. 

6. The inverse energy cascade of homogeneous isotropic turbulence 
6.1. Mean velocity and r.m.s. Jluctuations 

A zero mean value of the velocity is obtained along the line of electric measurements 
when Rh is smaller than a threshold which will be specified in $6.4. A mean velocity 
field must exist because of the steady forcing but i t  vanishes on the measurement 
line. This mean flow can be calculated from the experimental r.m.8. velocity by (16) 
and (1 7). For example for Rh = 3 the maximum mean velocity is 0.025. It is definitely 
smaller than the corresponding r.m.s. of 0.090 (non-dimensional values), and the 
ratio becomes much smaller for large values of Rh. These results are in agreement 
with the general impression that the influence of the periodicity is small in the 
turbulent regime. 

The variations of the r.m.s. velocity fluctuations along the line of measurements 
have a reproducible oscillating structure (figure 6). This structure is very similar for 
different experimental conditions with a free surface a t  a given value of Rh. However, 
the agreement is not so good when we compare these results with those for the rigid 
surface. I n  this latter case the amplitude and period of the oscillation are larger. It 
is not clear whether these differences are due to defects of the two-dimensional 
approximation or to  spurious effects at the boundary with the oxide skin. However, 
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FIGURE 6. The r.m.s. transverse velocity profile along the line of measurements for different 
experimental conditions corresponding to the same value of Rh = 10.07 (non-dimensional position). 
-, free upper surface, B = 0.5 T, I = 4 A ;  ----, free upper surface, B = 1 T, I = 8 A;  ----,  rigid 
upper surface, B = 0.5 T, I = 16 A.  
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FIGURE 7. R.m.8. transverse velocity ((o:))h averaged on the central third of the box versus Rh. 
Free surface: A, B = 1 T ;  0 ,  B = 0.50 T; m, B = 0.25 T ;  *, B = 0.125 T. Rigid surface: A, 
B = 1 T ;  0, B = 0.50 T ;  0, B = 0.25 T. 

these oscillations have a fairly small amplitude and the turbulent intensity can be 
considered as uniform to a first approximation. 

Let us define the r.m.s. velocity by averaging over the central third of the box and 
plot it versus Rh (figure 7). For a fixed magnetic field, this non-dimensional r.m.s. 
velocity increases with Rh and reaches a constant value at Rh % 20. The energy 
production rate ( E ) ,  given by (17), should then decrease for large values of Rh. Thus 
the flow is increasingly less correlated to the forcing, and the production mechanism 
less and less efficient. The non-dimensional results obtained with different experi- 
mental conditions are in good agreement for strong magnetic fields. However, the 
turbulent energy has a tendency to be smaller when the magnetic field is too weak, 
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FIGURE 8. Time spectra of the central stream function in log-log coordinates, normalized in such 
a way that I$ E( f )  df = <y?;). The frequency is non-dimensional, the corresponding real frequency 
in Hz is given b y S  = aj, where a is obtained from (2). The upper surface is free except for one 
case. (a) -, B = 1 T, Z = 1 A (Rh = 3.56), a = 0.50 s-l; ----, rigid surface, B = 0.5 T, Z = 2 A 
(Rh = 3.56), a = 0.50 s-l; ---, B = 1 T, 1 = 16 A (Rh = 14.2), a = 2.0 s-l. ( b )  ----, B = 0.25 T, 
I = 16 A (Rh = 28.5), a = 1.0; -, B = 0.123 T, Z = 16 A (Rh = 40.6), a = 1.40 s-l. The mean 
value <$1) is subtracted to +l before computing the spectrum. 

which happens at large Rh for practical reasons. This is because of a loss of energy 
production due to the three-dimensional effects above the electrodes. The large scale 
dynamics themselves should be in better agreement with the two-dimensional theory 
than is indicated by these global results. 

6.2. Time spectra 
Time spectra of the central stream function are obtained from samples of 50000 
successive pieces of data. The average is calculated from 210 fast Fourier transforms 
realized on 512 points. Each sample overlaps the preceding one by 50% and is 
multiplied by a Blackmann-Harris wind0w.t The spectra are always very smooth, 
which is proof that the flow is genuinely turbulent as soon as the periodic network 

t This window is suitable for investigating steep spectra with minimum perturbations of the 
sample edges (see Harris 1978). 
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FIGURE 9. Autocorrelation of the transverse velocity component ( w 2 ( s o )  w 2 ( s ) )  along the line of 
electric measurements. Rh = 20.1 ( B  = 0.5 T, Z = 16 A, free surface), -, zo = 0.5, ---, zo = 0.75. 

is destabilized. Typical results are plotted in figure 8 with logarithmic coordinates. 
At  large frequencies they exhibit a very steep power law of nearly constant slope of 
between 4.5 and 4.9. However, it is difficult to distinguish such a steep slope from 
an exponential curve. For weak values of Rh, the central stream function behaves 
like white noise for frequencies which are smaller than the inverse of the turnover 
time; i.e. the correlation time of these large scales is of the order of the turnover time. 

The long-time dynamics of the large scales is a random walk under the effect of 
the eddies corresponding to the injection scale. The large-scale behaviour is quite 
different for larger values of Rh as is shown in $7.  Notice that spectra obtained under 
very different experimental conditions corresponding to the same value of Rh are in 
good agreement, which is another validation of the two-dimensional equations (3). 

6.3. 0n.e-dimensional spectra 
Some typical autocorrelation functions of the transverse velocity along the line of 
electrical measurements are represented in figure 9. The similarity of the curves 
obtained with different origins xo for the autocorrelation <vz(so, v 2 ~ x o + x ~ )  is a good 
indication of the turbulence homogeneity. One-dimensional spectra of the transverse 
velocity component can be obtained by a Fourier transform of these autocorrelations. 
This method of calculating spectra is suitable for scales of motion that are definitely 
smaller than the size of the box, but not for the largest eddies. For example, a global 
rotation is not taken into account by the correlation function with the origin a t  the 
centre, since the corresponding velocity is vanishing there. A more suitable method 
for this case is to expand the instantaneous velocity profile in Fourier series and to 
average the square of the coefficients. The relation between these two kinds of 
one-dimensional spectra is given at  the end of the Appendix. 

Representative one-dimensional spectra are plotted in figure 10 together with the 
theoretical slopes k-! and k-3 and the injection wavenumber estimated in $2. These 
results are obtained by a Fourier series expansion, so that the wavenumber k is 
restricted to discrete values ( k  = nn/L).  Energy is concentrated around the injection 
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FIGURE 10. One-dimensional spectra of transverse velocity component in log-log coordinates. The 
points correspond to the 12 first terms of the Fourier series computed from a periodic profile 
obtained after a symmetrization (see $2.2). The normalization is such tha t  CF (a',) = 2(v:). The 
wavenumber is expressed in the unit n/L.  The slopes -g ,  -3 and 1 are indicated as well as the 
injection wavenumber. (a )  V, Rh = 5.04 (free upper surface, B = 1 T, I = 2 A) ;  0, Rh = 14.24 
(rigid upper surface, H = 0.25 T, I = 16 A) ;  (6) V, Rh = 27.4 (free upper surface, B = 0.25 T, 
I = 16 A ;  0, Rh = 40.3 (free upper surface, B = 0.125 T, I = 16 A. 

wavenumber for small values of the friction parameter. For Rh > 4, an inverse 
cascade begins to  grow, which is in reasonable agreement with a k-t range. However, 
this process is quickly limited by the size of the domain. Then the k 2  extends no 
further, yet the fluctuations of the smallest wavenumber continue to  increase 
progressively until most of the energy is condensed in the largest scale (n = l ) ,  
corresponding to a global rotation. So the main features observed by flow visualizations 
are confirmed by these measurements. 

The extent of the k-f energy spectrum is about half a decade in the best cases, 
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FIGURE 11 .  Two-dimensional ‘Kolmogorov constant’ C versus Rh calculated from the spatial 
spectra. Larger values are an indication of less efficient inverse energy transfers. Free surface: A, 
B = 1 T; 0,  B = 0.50 T; ., B = 0.25 T; *, B = 0.150 T (spectra calculated directly from 
autocorrelations by (A 8)). Rigid surface: A, B = 1 T; 0, B = 0.50 T; 0,  B = 0.25 T. 

which corresponds to values of Rh roughly between 14 and 30. Below these values, 
the Hartmann friction drains an important part of the energy along this cascade. 
Above them, sensible departures from homogeneity and isotropy are due to a global 
motion at the scale of the box. The two-dimensional Kolmogorov constant can be 
estimated from these measurements. For this purpose, the first step is to fit the 
spectrum to a k-! law, close to but below the wavenumber of energy injection. To 
get systematic processing we determine the straight line of slope -5 (in log-log 
coordinates) which is the closest to the points corresponding to n = 4 to 8. The second 
step is to relate these one-dimensional spectra to the usual isotropic energy spectra, 
by using the properties of isotropy and homogeneity. This is done using (A 21) and 
(A24), derived in the Appendix. Finally, it is necessary to determine the mean 
production of energy ( e )  (dropping the angled brackets for convenience) using 
relation (17), obtained in $2, by assuming that all the injected energy is dissipated 
only by Hartmann friction. The two-dimensional Kolmogorov constant C which is 
determined by this method is roughly independent of the experimental conditions 
for a given value of the friction parameter Rh (figure 11). This is a good test of the 
two-dimensional equation (3). The variations of C with Rh are sensible and are 
between 3 and 7. The inertial range is limited to about half a decade, so it is not 
surprising that a universal value of C is not reached. For large Rh, the interaction 
of the largest scales with the boundaries is not negligible, so that the inverse energy 
transfers should be inhibited, which corresponds to a larger value of C. For small Rh, 
the existence of an energy sink by Hartman friction at small wavenumbers should 
enhance the inverse transfers, due to their ‘diffusive’ properties, i.e. the tendency 
to smooth the energy spectrum. By this effect, C should be smaller at  small Rh than 
the asymptotic constant. Indeed a value C = 3 is obtained by Herring & McWilliams 
(1985) in a limited inertial range, in the framework of a second-order closure (Test 
Field Model), while the corresponding asymp,totic constant is 6.5 (Kraichnan 1975). 
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In a larger box, a plateau should exist in the graph of C versus Rh, at between 3 and 
7, corresponding to the asymptotic value. This estimation is slightly smaller than the 
value of 9 obtained by Frisch & Sulem (1984) and is consistent with the value of 5 
of Herring & McWilliams. These latter results were obtained by direct numerical 
simulations (pseudo-spectral scheme) of the two-dimensional Navier-Stokes equation 
with a random forcing. The value of 14 of Siggia & Aref (1981) calculated by a 
vortex-in-cell numerical method is much larger. 

The other important feature of two-dimensional turbulence is the enstrophy 
cascade towards small scales. However, the present data do not provide any 
informition about it, since the spatial resolution of the measurements is not good 
enough : the size of the smallest eddies that can be resolved is about half the injection 
scale. 

Finally, it is worth noting the behaviour of the spectra at small wavenumbers for 
small values of Rh. Indeed, they are proportional to the wavenumber k to within a 
good approximation. It is shown in the Appendix that the isotropic energy spectra 
should behave the same way. Spectra in k' correspond to an equipartition of energy 
in two-dimensional turbulence and should be obtained with a thermodynamic 
equilibrium between the turbulent modes. However, since the Hartmann dissipation 
is important in this case and the system should be far from thermodynamic 
equilibrium, this experimental result is surprising. 

7. Interactions of large-scale flows with the boundaries 
7.1.  A condensation in the lowest mode 

For Rh x 35, a global rotation spontaneously appears, superimposed on smaller 
eddies (visualized in figure 4 d ) .  Either rotation sense is possible, and random 
relatively short reversals can occur between these two quasi-stable states, but their 
probability decreases very quickly with increasing Rh. For Rh > 41, the rotation 
sense can persist for several days and a non-zero large-scale mean flow is measured. 
The sense can be chosen, then, by means of a convenient initial impulse. The complex 
structure of this flow is revealed by a mean-velocity profile obtained on the line of 
electric measurements (figure 12). Velocity reaches a maximum near the walls and 
some spatial oscillations are superimposed on the large-scale flow ; these look 
analogous to the oscillations of the r.m.8. velocity at smaller values of Rh (figure 6), 
but are organized in a coherent manner here. Spatial spectra (taking into account 
both the mean flow and the fluctuations) confirm that most of the energy is condensed 
in the lowest mode 1 , l  (figure lob). There is also a weaker secondary maximum a t  
the injection wavenumber. 

The condensation of most of the energy in the lowest mode w&s predicted by 
Kraichnan (1967) by statistical-thermodynamics arguments which we shall briefly 
summarize. The stream function is expanded by means of a complete orthonormal 
set of eigenfunctions @n of the Laplacian operator (A@n = A; @n), vanishing on the 
boundary. This expansion is given by (8) for our square box. If dissipation and 
forcing are neglected and a maximum cutoff wavenumber is arbitrarily assigned, the 
system can be considered to be in thermodynamic equilibrium (Kraichnan & 
Montgomery 1980). Statistical mechanics, taking into account the conservation of 
both energy and enstrophy, leads to a spectral-energy distribution proportional to 
l/(a+/3A2,), where a and /3 are two constants (negative or positive). In the limit 
a + /3h; + 0 the energy of the single lowest mode n = 1 becomes much larger than all 
the others. This behaviour is formally analogous to the Bose-Einstein condensation 

6 Y L M  170 
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FIQURE 12. Mean transverse velocity profile when no reversal is observed (non-dimensional 
coordinates). Rh = 41.1 (B = 0.12 T, I = 16 A, free surface). 

1 2 3 4 5 Global 

n = 2 106x(a:) 27 57 72 50 26 39.5 
ku 3.3 3.2 2.8 3.0 3.1 3.55 

n = 3 106x(a~)  11.7 25.2 41.0 21.5 10.8 36.8 
ku 3.2 2.8 2.5 2.8 3.0 2.5 

n = 8 1O6x(a;) 5.7 5.6 6.0 5.2 5.6 5.6 
ku 2.7 2.8 2.7 2.5 2.7 2.7 

TABLE 1. R.m.s. and kurtosis ((a4)>l(a2)(a2)) of the conditional probability distribution of 
the three wavenumbers, n = 2, 3, 8. These distributions are calculated from samples for 
which the amplitude of the mode n = 1 is in the range labelled by the numbers 1 to 5. These 
numberscorrespond totherangesl- co, -0.0351, [ -0.035, -0.0151, [-0.015,0.015], [0.015,0.035], 
[0.035, co] respectively (see also figure 17). The global quantities obtained without any condition 
on the n = 1 mode are indicated in the last column. 

in the fundamental state for a perfect quantum gas. One could expect that  the 
artificial cutoff a t  high wavenumber has then little influence, and that this situation 
of thermodynamic equilibrium should be approached when the inverse energy cascade 
is inhibited by the boundary. 

Apart from the existence of the condensation phenomenon, the thermodynamic 
theory cannot be used to interpret several other important experimental features. 
First, the spatial spectra are not decreasing monotonically for large Rh: there is a 
secondary maximum near the injection wavenumber (figure l o b ) .  However one could 
consider that only the largest scales are in thermodynamic equilibrium and an 
enstrophy cascade occurs at small scales. Secondly, the probability distribution of 
each mode should be Gaussian and it should be decorrelated with the other ones. I n  
fact, the probability distribution of the mode n = 1 is split into two main peaks, 
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FIGURE 13. Typical time records of the non-dimensional central stream function (free surface, 
Z = 16 A). (a) Rh = 36.8; (a) Rh = 39.5. Notice the very long timescales. 

corresponding to the two senses of rotation (figure 17), and this mode is correlated 
to its harmonic n = 3 (table 1).t A quasi-Gaussian distribution is again obtained at  
large values of Rh, but around a non-zero mean value. Notice that the Gaussian 
distribution around 0 is theoretically predicted for a canonical ensemble, i.e. a system 
in statistical equilibrium with a large 'thermal bath ', for which energy fluctuations 
can be important. Since the energy fluctuations of our system are limited, the 
microcanonical ensemble, which describes an isolated system, should be more 
appropriate. It would be interesting to develop such a theory to ascertain whether 
the existence of the mean rotation can be explained only by thermodynamic 
arguments . 

A remark should be made about the generality of these results for different 
boundary shapes. In a square box, the condensation in the mode n = 1 is not 
forbidden by the conservation of angular momentum. Indeed, the electric forcing is 
symmetric and cannot bring any rotation sense by itself, but the momentum of the 
pressure forces at the lateral walls can balance the decay due to the bottom friction. 
In  a circular box, the pressure forces are radial and have no momentum, so the total 
angular momentum must vanish in the limit of large Reynolds numbers. The 
condensation in the single lowest mode is then forbidden. It should occur in the two 
vortex modes (calculated with Bessel functions). Since two such modes (corresponding 

t In fact, we measure one-dimensional modes which correspond to a superposition of several 
two-dimensional modes, but the qualitative behaviour should be the same. 

6-2 
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FIGURE 14. Probability density of the central non-dimensional stream function (in abscissa). (a) 
Rh = 3.56 (free surface B = 1 T, Z = 1 A ) ;  the distribution is very close to Gaussian (represented 
by a dashed line). (a) Rh = 40.3 (free surface, B = 0.125 T, I = 16 A); two symmetric peaks are 
obtained, corresponding to the two senses of rotation. The probability is integrated in the hatched 
area to plot one point of figure 15. 

to the x- and y-directions exist, important fluctuations of a mode amplitude can occur 
without dramatic fluctuations of the total energy. So their probability distribution 
can be close to Gaussian without symmetry breaking. The same remark applies to 
period boundary conditions, for which the lowest mode is also degenerate, due to the 
phase indetermination. 

7.2. The transition between the quasi-isotropic turbulence and the mean $ow 
An easy way to quantify the rotation rate is to measure the stream function at the 
centre (i.e. the electric potential). For moderate values of Rh this quantity has a 
Gaussian probability distribution (figure 14a) around 0, and the time spectra are flat 
for frequencies lower than the inverse of a typical turnover time (figure 8). These two 
features are a characteristic of a random walk due to the effect of small eddies. As 
Rh is increased, the probability distribution is first flattened and then split into two 
peaks corresponding to the two rotation senses (figure 14b) and the importance of 
very small frequencies increases (figure 8). 

For Rh > 35, one can distinguish phases of constant rotation sense followed by 
relatively short changes of sense (figure 13). Some isolated ‘events’ can also disturb 
the global flow without changing its sense. The typical duration between reversals 
increases very rapidly with the friction parameter, and it is tempting to look for a 
transition threshold. For this purpose, increasing values of Rh are obtained with 
decreasing magnetic fields for a constant electric current of 16 A. For Rh = 41, no 
reversals were observed during two 100-hour records, one for each sense (chosen by 
means of a suitable initial condition). So we can consider that a non-zero mean flow 
is obtained from a practical point of view. However, a plot of the mean frequency 
of the reversals versus Rh, using a logarithmic vertical scale, suggests that it 
decreases roughly exponentially without any well-defined threshold (figure 15). It is 
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FIGURE 15. Behaviour near the transition between the quaai-isotropic regime and the mean flow. 
Two characteristic quantities are plotted versus Rh (semi-logarithmic coordinates). m, The mean 
frequency of reversals in units per lo4 s. (The hatched area at Rh = 41.1 is an estimation of the 
reversal frequency based upon the fact that no reversal is observed during 100 hours.) 0,  
Probability of finding the central stream function between f O . O 1  (integral of the probability 
density in the hatched area of figure 14). 

of course more and more difficult to avoid statistical fluctuations of this frequency 
as Rh is increased. Since many ‘events’ bring a zero central stream function but do 
not lead to a reversal, the transition can be more easily characterized by the value 
of the probability distribution of the central stream function near 0. These results 
reported in figure 15 are also in agreement with exponential behavour without a 
well-defined threshold. 

If Rh is increased above 41, fluctuations of the central stream function have again 
a quasi-Gaussian distribution but around the mean value, and the time spectra get 
flatter and flatter at  small frequencies (figure 8b). There is also a broad spectral peak, 
corresponding to a period of rotation. Otherwise the fluctuation amplitude continues 
to decrease. 

7.3. Interactions between the different spatial d e a  
The reversals correspond to an important variation of the total angular momentum 
of the fluid and therefore cannot be directly due to small external perturbations. The 
change of rotation sense occurs during a few minutes, which is short compared with 
the long timescales but still longer than the turnover time. We did not notice any 
well-defined mechanism for the reversals. Otherwise, the duration of two successive 
stages of constant rotation sense is not clearly related. So it seems that the reversals 
are due to an exceptional fluctuation of the large-scale flows under the random effect 
of small eddies. 

Simultaneous records of the amplitude of the different spatial wavenumbers during 
reversals bring some insight to this problem. Such records are obtained by a Fourier 
transform of the electric potential at the 11 measurement points, and a typical 
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FICNJRE 16. Simultaneous records of the time evolution of the non-dimensional amplitude of 
different wavenumbers (free surface, I = 16 A, B = 0.132 T; Rh = 39.2). (a) n = I ,  (b)  n = 2, (c) 
n = 3, (d) = 8. The evolution of n = 1 is very well correlated to the central stream function. 

sample is shown for n = 1 , 2 ,  3 and 8 in figure 16. The mode n = 1 is dominant and 
is well correlated with the stream function a t  the centre. The mode n = 3 is a 
harmonic of n = 1 with the same symmetry and it is not surprising that they are 
correlated. The modes n = 2 and n = 8 seem to be uninfluenced by the reversals. 
These qualitative observations can be made more precise by the determination of the 
probability distribution of these modes (figure 17). First of all, a complex structure 
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FIGURE 17. Probability distribution of the wavenumbers. (a )  n = 1, ( b )  n = 2, (c) n = 3, (d) n = 8. 
The ranges 1 ,  2, 3,4, 5 in (a) are used to calculate the conditional probabilities of table 1 .  

for n = 1 is revealed. The two main peaks are related to the two senses of rotation. 
Their height is not equal, probably due to a small experimental dissymmetry. Beside 
them, two secondary peaks are observed which correspond to the relative stability 
of an intermediate state that can be observed during reversals (figures 13 and 16a). 
The distribution for small-scale flows ( n  = 8) is very close to a Gaussian with a 
kurtosis? of 2.8, so that they seem to be insensitive to the large-scale-flow behaviour. 
The kurtosis o f n  = 2, equal to 3.5, is an indication that the corresponding dynamics 
is more complicated. More precise information can be obtained by calculating the 
joint probability distribution for n = 1, n = 2 and n = 1, n = 8. To avoid excessive 
statistical fluctuations a partition into 5 sets for the n = 1 amplitude is used 
(represented in figure 17), and the results obtained from a total set of 6000 samples 
are summarized in table 1. The fluctuations of the mode n = 2 are more important 
when the rotation associated with n = 1 is smaller. So this mode is involved in the 
reversal process. The small scales represented by n = 8 are independent of the global 
rotating flow. In other words, the occurrence of the reversals is not associated with 
a strong fluctuation of the energy production. 

The kurtosis of the random variable a is defined as (a4)>l(a2)(a2) and is equal to 3 for a 
Gaussian. 
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8. Similarities with geophysical flows 
Two-dimensional equations similar to (3) are generally used to model large-scale 

atmospheric motions in the quasi-geostrophic approximations. The transfer of 
barotropic energy from the scale L, of production by the baroclinic instability to 
larger eddies and to the mean zonal flow is generally assimilated by a two-dimensional 
inverse energy cascade. This latter is limited a t  a scale La (Rhines 1979) by the 
variation of the horizontal component of the Coriolis force with latitude (p-effect). 
There is also a limitation due to the surface friction in the planetary boundary layer. 

This drag is usually modelled by a linear term - v / t ,  identical with the Hartmann 
friction. The coefficient l/t, can be estimated from the measured depth of the 
planetary boundary layer by taking into account the Ekman effect. The production 
mechanism by the baroclinic instability involves thermal phenomena and is much 
more complicated than the steady force of the present experiments. This latter is 
exactly analogous to the vorticity production by sources and sinks in the bottom of 
the rotating tank as used by Colin de Verdikre (1980). In such experiments, a 8-effect 
can be obtained by means of large-scale topography. A similar method cannot be 
used in an MHD device: energy would be dissipated rather than propagated as 
Rossby waves. However, the limitation of the inverse energy cascade by the /3-effect 
is roughly similar to the confinement between two parallel walls, east-west oriented 
a distance Lg apart. There is no limitation in the perpendicular direction (Rhines 
1979), so a better analogy would be provided by an experiment in a large-aspect-ratio 
rectangular box. 

In  spite of many shortcomings i t  is useful to compare the experimental parameters 
and the atmospheric ones which are typically 

L, x 1000 km, 
Lg x 3000 km, 
t ,  x 106 s, 

E x 3 x m2 s - ~ .  

The non-dimensional qualities which must be used in (3) can be obtained from the 
non-dimensional length 1 and time t 

1 = l*/LB, 
t = (t*/TE) Rh. 

The experimental parameter Rh is such that the corresponding non-dimensional 
forcing is of the order of unity. However, the ratio between the injection scale L, and 
the largest available one LB is half the experimental one, so that the comparison 
should be made on the injection of energy E ,  which is independent of the scale to a 
first approximation, 

Rh3e = eLj2t& x 30. 

The value is obtained experimentally for Rh x 20, E being calculated from the 
turbulent energy by (17). It corresponds to a regime for which the limitation of the 
inverse energy cascade is mainly due to friction effects, but for which a global 
rotation with random reversals begins to appear. There could be some analogies 
between this global rotation and persistent atmospheric anomalies such as blocking 
(M. Lesieur, private communication). By proceeding with this comparison one 
should expect that such anomalies are more persistent in atmospheric situations for 
which the product ELi2t& is especially large. 
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9. Conclusions 
The previous investigations of quasi-two-dimensional turbulence in liquid metals 

submitted to a uniform magnetic field, made in channels, have been concerned with 
decaying turbulence. Here, we are able to investigate the inverse energy cascade of 
a statistically steady turbulence, by means of a well-controlled electric forcing. A 
two-dimensional dynamics is well achieved for B 2 0.25 Tesla, probably because of 
the relatively small depth and the ‘soft’ forcing mechanism. This affirmation is 
supported by the good correspondence of the non-dimensional results obtained with 
the same value of Rh for different experimental conditions (free and rigid upper 
surface, different magnetic fields). Direct agreement with solutions of the two- 
dimensional Navier-Stokes equation was also obtained in very similar situations by 
Sommeria & Verron (1984) and Sommeria (1984). Measurements of the small 
three-dimensional perturbations, for example by the potential difference between top 
and bottom, should also be interesting. Notice however that a test of the two- 
dimensional dynamics by this method is difficult. Indeed, in a strong magnetic field, 
turbulence can be kinematically two-dimensional, i.e. with a very anisotropic 
structure, but still much influenced by Joule dissipation (Alemany et al. 1979). 

The results can be divided into three parts. 
(i) An instability of a square, periodic network of alternating vortices by pairing 

processes is clearly identified. This result is a demonstration that two-dimensional 
turbulence can be generated by a hydrodynamic instability without any random 
forcing. 

(ii) The first experimental measurement of the two-dimensional IC3 inverse energy 
cascade is obtained. These experiments are made in a fairly strong magnetic field, 
and the non-dimensional results depend mainly on Rh (figures 7 and l l ) ,  which is 
a good proof of the two-dimensional dynamics. There is no doubt about the sense 
of the energy transfers since the forcing scale is clearly known. More direct 
measurements of the rate of energy transfer could be provided by bispectra 
(third-order moments). The turbulence spatial homogeneity is not good (figure 6) and 
the influence of the forcing anisotropy is unknown, although its square symmetry is 
not apparent on visualizations. However, the consistency of the two-dimensional 
Kolmogorov constant with recent numerical simulations made with a random forcing 
is encouraging. Further experiments should be performed in a larger box, which is 
not a major technical problem, in order to be closer to an asymptotic inertial range. 
The spatial spectra were measured directly and accurately by means of the line of 
electrodes. However, the spatial resolution was not good enough to investigate the 
enstrophy cascade. 

(iii) When friction is small enough, most of the energy is condensed in the lowest 
mode, which can be interpreted by statistical-thermodynamics arguments. However, 
the corresponding appearance of a mean flow is not predicted in the framework of 
canonical ensembles. It would be interesting to know whether it can be explained 
by a more suitable statistical-thermodynamics theory or whether a specific dynamical 
theory is needed. Notice that the appearance of a mean flow is related to the existence 
of a single lowest mode, and should not exist when the lowest mode is degenerate, 
as in a circular box or with periodic boundary conditions. Indeed, a long-time 
numerical study of the two-dimensional inverse energy cascade limited by the 
periodic boundary conditions was performed by Hossain, Matthaeus & Montgomery 
(1983). In that work, about 90 % of the turbulent energy is eventually concentrated 
in the lowest mode, but no mean flow is obtained. 
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This condensation corresponds to a fairly sharp transition with the parameter Rh, 
but a well-defined threshold is not observed. The typical time between two successive 
reversals increases very rapidly with Rh, and becomes several orders of magnitude 
greater than the turnover time. Because of this timescale separation and the spectral 
separation between the lowest mode and the injection one, a statistical theory could 
probably provide interesting results. The study of this long-time behaviour, which 
is presently very costly by numerical computations, could provide some new ideas 
about quasi-two-dimensional geophysical flows. Indeed, in the atmosphere a maxi- 
mum scale La is imposed by the /?-effect, in a similar way to that in a closed domain. 
Otherwise, there are striking analogies between the reversals of the rotation sense 
and the reversals of the Earth's magnetic field. Other experimental systems, as in 
Creveling et al. (1975), and models with few degrees of freedom, as the Lorenz system, 
can display such behaviour. However, the present mechanisms, associated with 
inverse energy transfers at  high Reynolds number, could be more relevant for 
geophysical flows. 

For practical reasons, the large values of Rh were obtained with a moderate 
magnetic field, and we have doubts about the two-dimensional dynamics. The 
existence of the global rotation was checked with a 36-vortex forcing in a numerical 
simulation of (3) by Sommeria & Verron (1985). A comparison of the long-term 
behaviour was not undertaken because of the computation cost. So, although the 
largest scales are clearly two-dimensional for geometrical reasons, one can wonder 
about the influence of small-scale three-dimensional perturbations on the turbulent 
fluctuations. Incidentally, it would be interesting to study the cases for which the 
small-scale perturbations are fully three-dimensional, in a very weak magnetic field 
or with other kinds of forcing. 

Useful discussions with U. Frisch. M. Lesieur, R. Moreau and J. Verron are gratefully 
acknowledged. Pertinent modifications were also suggested by 0. Lielausis and 
J. McWilliams, as referees. Thanks are due to R. Bolcato for the realization of the 
experimental facility and to A. Tupin for the typing of the manuscript. 

Appendix. Different definitions of the energy spectrum in two-dimensional 
homogeneous isotropic turbulence 

Relations between the different definitions of the energy spectrum and the 
autocorrelation functions for three-dimensional homogeneous isotropic turbulence 
are given in textbooks (e.g. Hinze 1975, p. 205). Some results concerning two- 
dimensional turbulence were published by Hutchings (1955), Lilly (1973) and Mory 
(1984). However, some additional results are needed in order to calculate the 
two-dimensional Kolmogorov constant from the measurements. 

The isotropic energy spectrum E(k)  is usually defined from the Fourier transform 
&(k) of the autocorrelation tensor Rgj(r) by the following relations (8 is the space 
dimension) : 

R,#) = ( u w  U,(X + r ) )  9 (A 1) 

E(k)  = 2nk2#,,(k) (three-dimensional), (A 3) 

E(k)  = xk  $ t r ( k )  (two-dimensional). (A 4) 
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Velocity measurements are limited to a straight line, so that longitudinal spectra E,(k) 
and transverse ones E2(k)  are naturally obtained from the corresponding correlation 
functionsf(r) and g(r). 

1 r + w  

E,(k) = & J f ( r )  e-ikr dr, 
- W  

As a consequence of incompressibility these two correlation functions are related 

and the corresponding relation between El and E, can be obtained by a Fourier 
transform of each term of (A 9). 

E,(k) = - k -  
dk 

It is now useful to get the isotropic correlations and spectra from the corresponding 
one-dimensional quantities. As a direct consequence of isotropy, 

A relation between E(k)  and Rtt(r) can be obtained by integrating in spherical shells 
in definition (A 2), 

0 r w  
E(k)  = 5 J kr sinkrR(r) dr (three-dimensional), 

= o  

(A 13) 
l " 0  

E(k)  = 2 s krJ,,(r)R(r) dr (two-dimensional), 
0 

where Jo is the zeroth-order Bessel function. By comparing (A 12) with a suitable 
combination of (A 7) and (A 8), a differential equation for E l ( k )  can be obtained. The 
solution of this equation leads to (Hinze 1975, p. 209) 

1 E(p)  k2 
E,(k)  = 5 J dp 7 (1 --) (three-dimensional), 

k P2 

l W  k2 
E,(k)  = 4 dp (1 +-p) (three-dimensional). 

k 

(The one-dimensional spectra defined here are equal to half the spectra of Hinze.) A 
similar relation for two-dimensional turbulence is less easy to obtain because of the 
Bessel function in (A 13). A useful intermediate step is to write the sum E l +  E, in 
the following form, using (A 7), (A 8) and (A 11): 
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Then, E,(k)+E,(k)  can be related to the isotropic spectrum by a simple change of 
variable 

This relation was given in another context by Babiano, Basdevant & Sadourny 
(1985). By means of (A lo), a differential equation for El is obtained, and its 
resolution leads to 

E(p)  dp (two-dimensional), 

E @ )  dp (two-dimensional). (A 19) 
2 O0 ke 

E,(k)  = - 
7C p2(p2- k2)i 

A . l .  Behaviour of one-dimelzsional spectra in the inertial range 

If the isotropic energy spectrum is equal to C d k 9  above a wavenumber k,, the 
one-dimensional spectra E,(k)  and E,(k)  have the same behaviour with the respective 
coefficients C, and C,. Relations (A 18) and (A 19) lead to 

C = "F9 JOw (chO)-t dO w 0.267 C, 

C - "9 JOw (chO)-i dO x 0.446 C. 

8~ 

' - 8  II: 

A.2. Behaviour of the one-dimensional spectra for small wavenumbers 
Let us suppose that the isotropic spectrum is equivalent to k", n > 0 as k+O. Then 
the longitudinal spectrum E l ( k ) ,  calculated by (A 18), behaves as a constant 

E l @ )  - JoOO dp as k+O. 
P 

So E l ( k )  is not suitable for an experimental determination of the behaviour of the 
isotropic spectrum at small wavenumbers. 

The behaviour of the transverse spectrum can be obtained by supposing that the 
isotropic spectrum is equal to ak-n for 0 < k < k,, where k, is a fixed cutoff. The 
integral of (A 19) can be split into two terms by integrating from k to k, and then 
from k,  to 00. The first term can be rearranged by assuming k 4 k,, and we get 

2 
E,(k)  = 7c [ak" Im (chO)n-2 dO+k2 

0 

If n < 2, the first term is the dominant one as k+O, and E,(k)  behaves in the same 
way as the isotropic spectrum. If n > 2, the second term is dominant and 

so that the slope of the one-dimensional spectrum is independent of the behaviour 
of the isotropic spectrum at small wavenumbers. 

A.3. Calculation of the energy spectrum in a square box 
Concepts of homogeneous isotropic turbulence can be used in a square box for scales 
which are sufficiently small. One-dimensional energy spectra can be obtained from 
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velocity measurements along the median straight line (described in $2) in two 
different ways. The first one is to calculate the transverse correlation function g( r )  
by (A 6), and its Fourier transform (A 5 )  does not depend on the origin x for a really 
homogeneous turbulence. In the present case, taking the origin a t  the box centre is 
the most natural choice. The second method is to extend the instantaneous velocity 
profile to a periodic one with a symmetry as is done in $3. It is then possible to expand 
it in Fourier series 

(I, 

w2(x) = E a,, cosnnx, (A 22) 
n-i 

v2(x) cos nnx dx = - 2nn $(x) sin nnx dx, Joi 
and to consider (a:) as a one-dimensional energy spectrum. These two definitions 
are equivalent in the limit of a large box. Indeed (a:) can be written aa a double 
integral which can be split into two terms. 

(a:) = 2 J: dx, J:l dr (w2(xo) v2(xo + r)) cos nnr 

+ 2 s,’ dx, J:l dr (w2(x0) w2(x, + r)) cos nn(22, + r ) ,  (A 23) 

if we increase the size of the box enough, we need only consider the large values of 
n, so that the second term vanishes, and the first one can be rearranged by using 
homogeneity and the definition of g(r) ,  

(a:) = 4nE2(n7c) for n+ ao. (A 24) 
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